从边长2a的正方形铁片的四个角各截一个边长为x的正方形,然后折成一个无盖的长方体盒子,要求长方体的高度x与底面正方形边长的比不超过正常数t.(1)把铁盒的容积V表示为x的函数,并指出其定义域;(2)x为何值时,容积V有最大值.
(本小题13分)已知,.(Ⅰ)求的值;(Ⅱ)求的值.
(本小题满分12分)设椭圆(a>b>0)的左右焦点分别为F1、F2,点D在椭圆上,DF1⊥F1F2,,△DF1F2的面积为.(1)求该椭圆的标准方程;(2)若圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线互相垂直并分别过不同的焦点,求出这个圆的方程.
(本小题满分12分)若数列满足,.(1)设,问:是否为等差数列?若是,请说明理由并求出通项;(2)设,求的前n项和.
(本小题满分12分)在三角形ABC中,内角A、B、C的对边分别为a、b、c,若="(b," .cosB),="(sinA," -a),且⊥.(1)求角B的大小;(2)若b=3,sinC=2sinA,求△ABC的面积.
(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,E、F分别为A1C1和BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F//平面ABE.