如图,抛物线 y = - x 2 + 1 与 x 轴的正半轴交于点 A ,将线段 O A 的 n 等分点从左至右依次记为 P 1 , P 2 , ⋯ , P n - 1 ,过这些分点分别作 x 轴的垂线,与抛物线的交点依次为 Q 1 , Q 2 , ⋯ , Q n - 1 ,从而得到 n - 1 个直角三角形 ∆ Q 1 O P 1 , ∆ Q 2 P 1 P 2 , ⋯ , ∆ Q n - 1 P n - 1 P n - 1 ,当 n → ∞ 时,这些三角形的面积之和的极限为 .
;
设,则.
已知函数的导数,若在处取得极大值,则的取值范围是.
函数与的图像所围成的图形的面积为,则.
函数的单调递增区间是 .