设动点 P 到点 A - 1 , 0 和 B 1 , 0 的距离分别为 d 1 和 d 2 , ∠ A P B = 2 θ ,且存在常数 λ ( 0 < λ < 1 ,使得 d 1 d 2 sin 2 θ = λ . (1)证明:动点 P 的轨迹 C 为双曲线,并求出 C 的方程; (2)过点 B 作直线交双曲线 C 的右支于 M 、 N 两 点,试确定λ的范围,使 → O M . → O N = 0 ,其中点O为坐标原点.
解关于x的不等式
解不等式(x+2)2(x+3)(x-2)
已知:a>0 , b>0 , a+b=1,求(a+ )2+(b+ )2的最小值.
已知f(x) = ax + ,若求的范围.
已知A、B、C是直线l上的三点,O是直线l外一点,向量满足=[f(x)+2f′(1)]-ln(x+1)(Ⅰ)求函数y=f(x)的表达式;(Ⅱ)若x>0,证明:f(x)>;(Ⅲ)若不等式x2≤f(x2)+m2-2m-3对x∈[-1,1]恒成立,求实数m的取值范围.