如图是一个直三棱柱(以 A 1 B 1 C 为底面)被一平面所截得到的几何体,截面为 A B C .已知 A 1 B 1 = B 1 C 1 = 1 , ∠ A 1 B 1 C 1 = 90 o , A A 1 = 4 , B B 1 = 2 , C C 1 = 3 , ∠ A l B l C 1 = 90 ° , A A l = 4 , B B l = 2 , C C l = 3 . (1)设点 O 是 A B 的中点,证明: O C ∥ 平面 A 1 B 1 C 1
(2)求二面角 B - A C - A 1 的大小; (3)求此几何体的体积.
某电视生产企业有A、B两种型号的电视机参加家电下乡活动,若企业投放A、B两种型号电视机的价值分别为a、b万元,则农民购买电视机获得的补贴分别为万元(m>0且为常数).已知该企业投放总价值为10万元的A、B两种型号的电视机,且A、B两种型号的投放金额都不低于1万元.(1)请你选择自变量,将这次活动中农民得到的总补贴表示为它的函数,并求其定义域;(2)求当投放B型电视机的金额为多少万元时,农民得到的总补贴最大?
如图,在等腰梯形ABCD中,AB∥DC,AB = 4,CD = 2,等腰梯形的高为3,O为AB中点,PO⊥平面ABCD,垂足为O,PO = 2,EA∥PO.(1)求证:BD⊥平面EAC;(2)求二面角E—AC—P的平面角的余弦值.
“上海世博会”将于2010年5月1日至10月31日在上海举行。世博会“中国馆·贵宾厅”作为接待中外贵宾的重要场所,其中陈列的艺术品是体现兼容并蓄、海纳百川的重要文化载体,为此,上海世博会事物协调局将举办“中国2010年上海世博会‘中国馆·贵宾厅’艺术品方案征集”活动.某地美术馆从馆藏的中国画、书法、油画、陶艺作品中各选一件代表作参与应征,假设这四件代表作中中国画、书法、油画入选“中国馆·贵宾厅”的概率均为,陶艺入选“中国馆·贵宾厅”的概率为.假定这四件作品是否入选相互没有影响.(1)求该地美术馆选送的四件代表作中恰有一件作品入选“中国馆·贵宾厅”的概率;(2)设该地美术馆选送的四件代表作中入选“中国馆·贵宾厅”的作品件数为随机变量,求的数学期望.
已知向量.(1)求函数的最大值;(2)在锐角三角形ABC中,角A、B、C的对边分别为a、b、c,且△ABC的面积为3,a的值.
己知.(Ⅰ)若,函数在其定义域内是增函数,求的取值范围;(Ⅱ)当时,证明函数只有一个零点;(Ⅲ)若的图象与轴交于两点,中点为,求证:.