已知 A B C 的三个顶点的直角坐标分别为 A ( 3 , 4 ) 、 B ( 0 , 0 ) 、 C ( c , 0 )
(1)若 c = 5 ,求 sin ∠ A 的值; (2)若 ∠ A 为钝角,求 c 的取值范围;
(本小题满分12分) 已知椭圆的离心率为,其中左焦点F(-2,0). (1) 求椭圆C的方程; (2) 若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求m的值.
(本小题满分12分) 已知向量a=(2,1),b=(x,y). (1) 若x∈{-1,0,1,2},y∈{-1,0,1},求向量a∥b的概率; (2) 若x∈[-1,2],y∈[-1,1],求向量a,b的夹角是钝角的概率.
(本小题满分12分) 已知,<θ<π. (1) 求tanθ; (2) 求的值.
( (本小题满分14分) 已知函数 (1) 当时,求函数的最值; (2) 求函数的单调区间; (3) 试说明是否存在实数使的图象与无公共点.
((本小题满分12分) 已知椭圆:的右焦点为F,离心率,椭圆C上的点到F的距离的最大值为,直线l过点F与椭圆C交于不同的两点A、B. (1) 求椭圆C的方程; (2) 若,求直线l的方程.