如图,在四棱锥 P - A B C D 中, P A ⊥ 底面 A B C D , A B ⊥ A D , A C ⊥ C D , ∠ A B C = 60 ° , P A = A B = B C , E 是 P C 的中点. (Ⅰ)证明 C D ⊥ A E ; (Ⅱ)证明 P D ⊥ 平面 A B E ; (Ⅲ)求二面角 A - P D - C 的大小.
(本小题满分12分)已知椭圆:的右焦点和上顶点在直线上,、为椭圆上不同两点,且满足. (1)求椭圆的标准方程; (2)证明:直线恒过定点.
(本小题满分12分)已知函数,在处取得极值且在点处的切线与平行. (1)求函数的解析式; (2)当在上的最小值和最大值; (3)若方程在上有三个不同实根,求实数的取值范围.
(本小题满分12分)在某次质量抽测后一数学老师随机抽取了30位(其中男、女各15名)学生的成绩,得出如下表,假设80分为“优秀”,否则为“不优秀”.
(1)根据以上数据,试估计本次质量抽测数学科的优秀率(保留小数后三位); (2)完成下列列联表:
(3)利用分层抽样在“不优秀”的学生中抽取4人,再从抽取的4人随机抽取2人调查学习情况,求抽到一男一女的概率.
(本小题满分12分)如图等边三角形所在平面与菱形所在平面互相垂直,为中点,,. (1)求证:平面; (2)求点到平面的距离.
(本小题满分12分)在中,内角,,的对边分别为,,,且. (1)求角的值; (2)若,,求,的值.