设 S n 是数列 a n ( n ∈ N + )的前 n 项和, a 1 = a ,且 S n 2 = 3 n 2 a n + S n - 1 2 , a n ≠ 0 , n = 2 , 3 , 4 , . . . . (I)证明:数列 a n + 2 - a n ( n ≥ 2 ) 是常数数列; (II)试找出一个奇数 a ,使以18为首项,7为公比的等比数列 b n ( n ∈ N * ) 中的所有项都是数列 a n 中的项,并指出 b n 是数列 a n 中的第几项.
试比较nn+1与(n+1)n(n∈N*)的大小.当n=1时,有nn+1 (n+1)n(填>、=或<);当n=2时,有nn+1 (n+1)n(填>、=或<);当n=3时,有nn+1 (n+1)n(填>、=或<);当n=4时,有nn+1 (n+1)n(填>、=或<);猜想一个一般性的结论,并加以证明.
已知数列{an}的各项都是正数,且满足:.(1)求a1,a2;(2)证明an<an+1<2,n∈N.
用数学归纳法证明不等式:+++…+>1(n∈N*且n>1).
证明不等式(n∈N*)
已知函数f(x)=(x≠﹣1).设数列{an}满足a1=1,an+1=f(an),数列{bn}满足bn=|an﹣|,Sn=b1+b2+…+bn(n∈N*).(Ⅰ)用数学归纳法证明bn≤;(Ⅱ)证明Sn<.