(13分)已知函数的图象在轴右侧的第一个最值点(最高点或最低点)为,与轴在原点左侧的第一个交点为N.(1)求函数解析式;(2)若的图象在M,N之间与轴有交点,解不等式.
若点在抛物线上,点在圆上,求的最小值。
已知是上的点,是抛物线的焦点,求证:。
是抛物线上两点,满足(为坐标原点),求证(1)两点的横坐标之积、纵坐标之积分别为定值;(2)直线过一定点。
抛物线的顶点在原点,焦点是圆的圆心,(1)求抛物线的方程;(2)直线的斜率为,且过抛物线的焦点,若与抛物线、圆依次交于四个点,求。
求顶点在原点,焦点在轴上,且截直线所得的弦长为的抛物线的方程。