(本小题满分12分)设二次函数满足下列条件:①当∈R时,的最小值为0,且f (-1)=f(--1)成立;②当∈(0,5)时,≤≤2+1恒成立。(1)求的值; (2)求的解析式;(3)求最大的实数m(m>1),使得存在实数t,只要当∈时,就有成立。
向量、都是非零向量,且向量与垂直,与垂直,求与的夹角.
已知同一平面上的向量、、两两所成的角相等,并且,,,求向量的长度。
在边长为1的正三角形中,求的值.
已知P1(3,2),P2(8,3),若点P在直线P1P2上,且满足|P1P|=2|PP2|,求点P的坐标。
已知a是以点A(3,-1)为起点,且与向量b= (-3,4)平行的单位向量,则向量a的终点坐标是多少?