(本小题满分12分)已知斜三棱柱ABC—A1B1C1,侧面与底面垂直,∠,,且⊥,AA1=A1C.(1)试判断A1A与平面A1BC是否垂直,并说明理由;(2)求侧面BB1C1C与底面ABC所成锐二面角的余弦值.
已知数列的前项和为,,且. (1)计算; (2)猜想的表达式,并证明.
在直四棱柱ABCD—A1B1C1D1中,已知底面四边形 ABCD是边长为3的菱形,且DB=3,A1A=2,点E 在线段BC上,点F在线段D1C1上,且BE=D1F=1. (1)求证:直线EF∥平面B1D1DB; (2)求二面角F—DB—C的余弦值.
设均为锐角,且.求证:.
设,椭圆方程为,抛物线方程为.如图所示,过点作轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点. (1)求满足条件的椭圆方程和抛物线方程; (2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).
正四棱锥中,, 点M,N分别在PA,BD上,且. (Ⅰ)求异面直线MN与AD所成角; (Ⅱ)求证:∥平面PBC; (Ⅲ)求MN与平面PAB所成角的正弦值.