已知函数f(x)是 (xR)的反函数,函数g(x)的图象与函数的图象关于直线x=-2成轴对称图形,设F(x)=f(x)+g(x).(1)求函数F(x)的解析式及定义域;(2)试问在函数F(x)的图象上是否存在两个不同的点A,B,使直线AB恰好与y轴垂直?若存在,求出A,B坐标;若不存在,说明理由.
(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.
已知函数,的图像在点处的切线为.().(1)求函数的解析式;(2)若,且对任意恒成立,求的最大值.
如图,椭圆:的右焦点为,右顶点、上顶点分别为点、,且.(1)求椭圆的离心率;(2)若斜率为2的直线过点,且交椭圆于、两点,.求直线的方程及椭圆的方程.
为选拔选手参加“中国汉字听写大会”,某中学举行了一次“汉字听写大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为)进行统计.按照,,,,的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在,的数据).(1)求样本容量和频率分布直方图中的、的值;(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取3名学生参加“中国汉字听写大会”,设随机变量表示所抽取的3名学生中得分在内的学生人数,求随机变量的分布列及数学期望.
如图,设四棱锥的底面为菱形,且∠,,。(1)求证:平面平面;(2)求平面与平面所夹角的余弦值.