(本小题满分13分)如图,在三棱柱中,每个侧面均为正方形,为底边的中点,为侧棱的中点,与的交点为.(Ⅰ)求证:∥平面; (Ⅱ)求证:平面.
如图,中,是的中点,,.将沿折起,使点与图中点重合. (Ⅰ)求证:; (Ⅱ)当三棱锥的体积取最大时,求二面角的余弦值; (Ⅲ)在(Ⅱ)的条件下,试问在线段上是否存在一点,使与平面所成的角的正弦值为?证明你的结论.
已知函数,其中 (Ⅰ)求函数的定义域; (Ⅱ)若对任意恒有,试确定的取值范围.
设函数 (Ⅰ)当时,求的值域; (Ⅱ)已知中,角的对边分别为,若,,求面积的最大值.
(本小题满分14分) (1)若是的一个极值点,求的单调区间; (2)证明:若; (3)证明:若.
(本小题满分13分)已知为椭圆的左,右焦点,为椭圆上的动点,且的最大值为1,最小值为-2. (1)求椭圆的方程; (2)过点作不与y轴垂直的直线交该椭圆于两点, A为椭圆的左顶点.试判断是否为直角,并说明理由.