(本小题共13分)已知数列的前项和为,且满足,.(Ⅰ)求证:{}是等差数列;(Ⅱ)求数列的通项公式;(Ⅲ)若,求证: .
已知函数(Ⅰ)若函数在处取到极值,求的值.(Ⅱ)设定义在上的函数在点处的切线方程为,若在内恒成立,则称为函数的的“HOLD点”.当时,试问函数是否存在“HOLD点”,若存在,请至少求出一个“HOLD点”的横坐标;若不存在,请说明理由.
已知椭圆的中心在原点,焦点在轴上,经过点,离心率.(Ⅰ)求椭圆的方程;(Ⅱ)椭圆的左、右顶点分别为、,点为直线上任意一点(点不在轴上),连结交椭圆于点,连结并延长交椭圆于点,试问:是否存在,使得成立,若存在,求出的值;若不存在,说明理由.
如图,已知平面平面,与分别是棱长为1与2的正三角形,//,四边形为直角梯形,//,,点为的重心,为中点,,(Ⅰ)当时,求证://平面(Ⅱ)若直线与所成角为,试求二面角的余弦值.
已知数列为等比数列,其前项和为,已知,且对于任意的有,,成等差;(Ⅰ)求数列的通项公式;(Ⅱ)已知(),记,若对于恒成立,求实数的范围.
在△ABC中,角所对的边分别为,,△ABC的面积为,(Ⅰ)若,求;(Ⅱ)若为锐角,,求的取值范围.