(本小题满分8分)如图,在中,D、E分别是AB、AC的中点,DM=DE,若,(1)用表示(2)若N为线段BC上的点,且BN=BC,用向量方法证明:A、M、N三点共线
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中轴的正半轴重合,且两坐标系有相同的长度单位,圆C的参数方程为(为参数),点Q的极坐标为。(1)化圆C的参数方程为极坐标方程;(2)直线过点Q且与圆C交于M,N两点,求当弦MN的长度为最小时,直线的直角坐标方程。
如图,PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5。求:(1)⊙O的半径;(2)s1n∠BAP的值。
已知椭圆C:的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切。(1)求椭圆C的方程;(2)若过点M(2,0)的直线与椭圆C交于两点A和B,设P为椭圆上一点,且满足·(O为坐标原点),当 时,求实数t取值范围。
为迎接2013年“两会”(全国人大3月5日-3月18日、全国政协3月3日-3月14日)的胜利召开,某机构举办猜奖活动,参与者需先后回答两道选择题,问题A有四个选项,问题B有五个选项,但都只有一个选项是正确的,正确回答问题A可获奖金元,正确回答问题B可获奖金元.活动规定:参与者可任意选择回答问题的顺序,如果第一个问题回答错误,则该参与者猜奖活动中止.假设一个参与者在回答问题前,对这两个问题都很陌生,试确定哪种回答问题的顺序能使该参与者获奖金额的期望值较大.
如图1,在△ABC中,BC=3,AC=6,∠C=90°,且DE∥BC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2。(1)求证:BC⊥平面A1DC;(2)若CD=2,求BE与平面A1BC所成角的正弦值。