(理)已知直线的参数方程为(t为参数),曲线C的参数方程为(为参数),直线与曲线C相交于两点,又点的坐标为.求:(1)线段的中点坐标;(2)线段的长;(3)的值.(文)已知(,为常数).(1)若,求的最小正周期;(2)若时,的最大值为4,求的值.
已知椭圆方程为 斜率为的直线过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴交于点M(0,m)。(1)求m的取值范围;(2)求△OPQ面积的取值范围。
如图,四棱锥P-ABCD中底面ABCD为矩形,PD⊥底面ABCD,AD=PD=1,AB=BC,E、F分别为CD、PB的中点。(1)求证:EF⊥平面PAB;(2)求三棱锥P-AEF的体积
一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2, 3,4.(1)从袋中随机抽取一个球,将其编号记为,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为.求关于的一元二次方程有实根的概率;(2)先从袋中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为.若以作为点P的坐标,求点P落在区域内的概率.
设数列的前项和为,已知 (1)求数列的通项公式;(2)若,求数列的前项和
设正有理数是的一个近似值,令.(Ⅰ)若,求证:; (Ⅱ)比较与哪一个更接近于?