(本小题满分12分)某厂工人在2010年里,如果有1个季度完成生产任务,则得奖金300元;如果有2个季度完成生产任务,则可得奖金750元;如果有3个季度完成生产任务,则可得奖金1260元;如果有4个季度完成生产任务,可得奖金1800元;如果工人四个季度都未完成任务,则没有奖金,假设某工人每季度完成任务与否是等可能的,求他在2010年一年里所得奖金的分布列及其数学期望。
已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆的短轴端点和焦点所组成的四边形周长等于8。(Ⅰ)求椭圆的方程;(Ⅱ)若过点的直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求直线的方程。
已知数列满足:且.(Ⅰ)求,,,的值及数列的通项公式;(Ⅱ)设,求数列的前项和;
已知斜三棱柱,,,在底面上的射影恰为的中点,又知.(Ⅰ)求证:平面; (Ⅱ)求到平面的距离;(Ⅲ)求二面角的大小。
某车站每天上午发出两班客车,第一班客车在8∶00,8∶20,8∶40这三个时刻随机发出,且在8∶00发出的概率为,8∶20发出的概率为,8∶40发出的概率为;第二班客车在9∶00,9∶20,9∶40这三个时刻随机发出,且在9∶00发出的概率为,9∶20发出的概率为,9∶40发出的概率为 .两班客车发出时刻是相互独立的,一位旅客预计8∶10到站.求:(1)请预测旅客乘到第一班客车的概率;(2)旅客候车时间的分布列;(3)旅客候车时间的数学期望。
已知函数。(1)求的对称轴;(2)在中,已知,求。