袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的,用表示取球终止所需要的取球次数.(1)求袋中原有白球的个数;(2)求随机变量的概率分布;(3)求甲取到白球的概率.
已知数列的前n项和为,且满足各项为正数的数列中,对一切,有,且,,. (1)求数列和的通项公式. (2)设数列的前n项和为,求.
设函数 (1)若函数在处取得极值-2,求a,b的值. (2)若函数在区间(-1,1)内单调递增,求b的取值范围.
某省对省内养殖场“瘦肉精”使用情况进行检查,在全省的养殖场随机抽取M个养殖场的猪作为样本,得到M个养殖场“瘦肉精”检测阳性猪的头数,根据此数据作出了频率分布表和频率分布直方图如下:
(1)求出表中M,P以及图中a的值. (2)若该省有这样规模的养殖场240个,试估计该省“瘦肉精”检测呈阳性的猪的头数在区间内的养殖场的个数. (3)在所取样本中,出现“瘦肉精”呈阳性猪的头数不少于20头的养殖场中任选2个,求至多一个养殖场出现“瘦肉精”阳性猪头数在区间内的概率.
如图,四棱锥P-ABCD的底面是正方形,PD面ABCD,E是PD上一点. (1)求证:ACBE. (2)若PD=AD=1,且的余弦值为,求三棱锥E-PBC的体积.
已知,,若,求: (1)的最小正周期及对称轴方程. (2)的单调递增区间. (3)当时,函数的值域.