(本小题满分12分)已知椭圆的两顶点与双曲线的焦点重合,它们的离心率之和为,若椭圆的焦点在轴上,求椭圆的方程。
设集合为函数的定义域,集合为函数的值域,集合为不等式的解集.(1)求;(2)若,求的取值范围.
如图,已知四边形ABCD内接于,且AB是的直径,过点D的的切线与BA的延长线交于点M.(1)若MD=6,MB=12,求AB的长;(2)若AM=AD,求∠DCB的大小.
已知函数(1)若函数在点处的切线与圆相切,求的值;(2)当时,函数的图像恒在坐标轴轴的上方,试求出的取值范围.
已知函数(1)当时,求函数的单调区间;(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间。设,试问函数在上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.
如图,四棱锥中,面面,底面是直角梯形,侧面是等腰直角三角形.且∥,,,.(1)判断与的位置关系;(2)求三棱锥的体积;(3)若点是线段上一点,当//平面时,求的长.