(本小题满分15分) (文)已知直线与曲线相切,分别求的方程,使之满足: (1)经过点;(2)经过点;(3)平行于直线;(理)如图,平面平面,四边形与都是直角梯形,,,分别为的中点(Ⅰ)证明:四边形是平行四边形;(Ⅱ)四点是否共面?为什么?(Ⅲ)设,证明:平面平面;
如图,在四棱锥中,底面为正方形,侧棱底面,,点为的中点。 (Ⅰ)求证:平面; (Ⅱ)求点到平面的距离。
已知圆C的圆心在直线上且在第一象限,圆C与相切, 且被直线截得的弦长为. (1)求圆C的方程; (2)若是圆C上的点,满足恒成立,求的范围.
如图,ABCD是正方形,O是正方形的中心, PO底面ABCD,E是PC的中点. 求证:(1)PA∥平面BDE; (2)平面PAC平面BDE
已知,O为原点. (1)求过点O的且与圆相切的直线的方程; (2)若P是圆C上的一动点,M是OP的中点,求点M的轨迹方程
已知直线经过两点,. (1)求直线的方程; (2)圆的圆心在直线上,且过点和,求圆的方程