20. (本小题满分13分)已知数列{an}有a1 = a,a2 = p(常数p > 0),对任意的正整数n,,且.(1)求a的值;(2)试确定数列{an}是否是等差数列,若是,求出其通项公式;若不是,说明理由;(3)对于数列{bn},假如存在一个常数b,使得对任意的正整数n都有bn< b,且,则称b为数列{bn}的“上渐近值”,令,求数列的“上渐近值”.
已知f(x)=logax,g(x)=2loga(2x+t-2)(a>0,a≠1,t∈R). (1)当t=4,x∈[1,2],且F(x)=g(x)-f(x)有最小值2时,求a的值; (2)当0<a<1,x∈[1,2]时,有f(x)≥g(x)恒成立,求实数t的取值范围.
已知函数。 (1)求的最小正周期和单调递增区间; (2)将按向量平移后图像关于原点对称,求当最小时的。
设集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+(a2-5)=0}. (1)若A∩B={2},求实数a的值; (2)若A∪B=A,求实数a的取值范围.
画出不等式组表示的平面区域,并求出此不等式组的整数解.
预算用元购买单价为元的桌子和元的椅子,并希望桌椅的总数尽可能多,但椅子数不能少于桌子数,且不多于桌子数的倍.问:桌、椅各买多少才合适?