(本小题满分14分)已知函数,为实数)有极值,且在处的切线与直线平行.(1)求实数a的取值范围;(2)是否存在实数a,使得函数的极小值为1,若存在,求出实数a的值;若不存在,请说明理由;
(本小题满分12分)已知集合,.(1)在区间上任取一个实数,求“”的概率;(2)设为有序实数对,其中是从集合中任取的一个整数,是从集合中任取的一个整数,求“”的概率.
(本小题满分12分)在中,内角所对边长分别为,,,.(1)求的最大值及的取值范围;(2)求函数的最值.
(本小题满分14分)现有甲,乙,丙,丁四名篮球运动员进行传球训练,由甲开始传球(即第一次传球是由甲传向乙或丙或丁),记第次传球球传回到甲的不同传球方式种数为.(1)试写出,并找出与()的关系式;(2)求数列的通项公式;(3)证明:当时, .
(本小题满分13分)(1)若(),试求实数的范围;(2)设实数,函数,试求函数的值域。
(本小题满分12分)已知不等式组所表示的平面区域为D,记D内的整点个数为(整点即横坐标和纵坐标均为整数的点).(1)数列的通项公式;(2)若,记,求证:.