(请考生在下面甲、乙两题中任选一题做答,如果多做,则按所做的甲题计分)甲题:(1)若关于的不等式的解集不是空集,求实数的取值范围;(2)已知实数,满足,求最小值.乙题:已知曲线C的极坐标方程是=4cos。以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(是参数)。(1)将曲线C的极坐标方程化成直角坐标方程并把直线的参数方程转化为普通方程;(2)若过定点的直线与曲线C相交于A、B两点,且,试求实数的值。
已知(mR) (Ⅰ)当时,求函数在上的最大,最小值。 (Ⅱ)若函数在上单调递增,求实数的取值范围;
在△ABC中,、、分别是角、、的对边,且. (Ⅰ)求角的大小; (Ⅱ)若,求△ABC的面积.
函数是定义在(-1,1)上的单调递增的奇函数,且 (Ⅰ)求函数的解析式; (Ⅱ)求满足的的范围;
已知函数且对于任意实数恒成立。 (1)求的值; (2)求函数的最大值和单调递增区间。
已知集合={|在定义域内存在实数,使得成立} (Ⅰ)函数是否属于集合?说明理由; (Ⅱ)证明:函数;. (Ⅲ)设函数,求实数a的取值范围.