(本题满分12分) 盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得分 . 现从盒内任取3个球.(Ⅰ)求取出的3个球颜色互不相同的概率;(Ⅱ)求取出的3个球得分之和恰为1分的概率;(Ⅲ)(文科) 求取出的3个球中白色球的个数为2个的概率(Ⅲ)(理科)设为取出的3个球中白色球的个数,求的分布列和数学期望.
已知函数(R,,,)图象如图,P是图象的最高点,Q为图象与x轴的交点,O为原点.且,,.(Ⅰ)求函数的解析式;(Ⅱ)将函数图象向右平移1个单位后得到函数的图象,当时,求函数的最大值.
(本小题满分10分)已知数列满足且对任意,恒有(1) 求数列的通项公式;(2) 设区间中的整数个数为求数列的通项公式。
(本小题满分10分)假定某人每次射击命中目标的概率均为,现在连续射击3次。(1) 求此人至少命中目标2次的概率;(2) 若此人前3次射击都没有命中目标,再补射一次后结束射击;否则。射击结束。记此人射击结束时命中目标的次数为X,求X的数学期望。
选修4-5:不等式选讲(本小题满分10分)已知实数满足,且,求证:
选修4-2:矩阵与变换(本小题满分10分)在平面直角坐标系xoy中,求圆C的参数方程为为参数r>0),以O为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为若直线与圆C相切,求r的值。