(本题满分12分) 盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得分 . 现从盒内任取3个球.(Ⅰ)求取出的3个球颜色互不相同的概率;(Ⅱ)求取出的3个球得分之和恰为1分的概率;(Ⅲ)(文科) 求取出的3个球中白色球的个数为2个的概率(Ⅲ)(理科)设为取出的3个球中白色球的个数,求的分布列和数学期望.
(本题满分12分)已知函数(为自然对数的底数). (1)求函数的最小值; (2)若,证明:.
(本题满分14分)设有抛物线C:,通过原点O作C的切线,使切点P在第一象限. (1)求m的值,以及P的坐标; (2)过点P作切线的垂线,求它与抛物线的另一个交点Q; (3)设C上有一点R,其横坐标为,为使DOPQ的面积小于DPQR的面积,试求的取值范围.
(本题满分14分)已知函数且 (1)试用含的代数式表示; (2)求的单调区间.
(本题满分14分) 在平面直角坐标系中,已知圆心在直线上,半径为的圆C经过坐标原点O. (1)求圆C的方程; (2)是否存在直线与圆C交于不同的两点A、B,且线段AB的中点恰在抛物线上,若存在请求出m的值,若不存在请说明理由.
(本题满分14分) 如图,圆锥的顶点是S,底面中心为O.OC是与底面直径AB垂直的一条半径,D是母线SC的中点. (1)求证:BC与SA不可能垂直. (2)设圆锥的高为4,异面直线AD与BC所成角的余弦值为,求圆锥的体积.