(本小题满分12分)一个袋子内装有若干个黑球,个白球,个红球(所有的球除颜色外其它均相同),从中任取个球,每取得一个黑球得分,每取一个白球得分,每取一个红球得分,已知得分的概率为,用随机变量X表示取个球的总得分.(Ⅰ)求袋子内黑球的个数;(Ⅱ)求X的分布列.
(本小题满分12分)已知函数(1)当时,求的极值;(2)当时,求的单调区间.
(本小题满分12分)已知数列的前n项和为,且(1)试求的通项公式; (2)若,试求数列的前项和.
(本小题满分12分) 设锐角的三个内角的对边分别为,已知成等比数列,且 (1) 求角的大小; (2) 若,求函数的值域.
(本小题满分12分) 已知等差数列的首项前项和记为,求取何值时,取得最大值,并求出最大值.
(本小题满分10分) 在中,角为锐角,记角所对的边分别为,设向量,且的夹角为(1)求的值及角的大小;(2)若,求的面积.