设 f ( x ) = 1 + a x 1 - a x ( a > 0 且 a ≠ 1 ) , g ( x ) 是 f ( x ) 的反函数. (Ⅰ)设关于 x 的方程求 log a t ( x 2 - 1 ) ( 7 - x ) = g ( x ) 在区间 2 , 6 上有实数解,求 t 的取值范围; (Ⅱ)当 a = e (e为自然对数的底数)时,证明: ∑ k = 2 n g ( k ) > 2 - n - n 2 2 n ( n + 1 ) ; (Ⅲ)当 0 < a ≤ 1 2 时,试比较 ∑ k = 1 n f ( k ) - n 与4的大小,并说明理由.
如图,在平面四边形中,, (1)求的值; (2)求的长.
已知椭圆的右焦点为,且点在椭圆上,为坐标原点. (Ⅰ)求椭圆的标准方程; (Ⅱ)设过定点的直线与椭圆交于不同的两点、,且为锐角,求直线的斜率的取值范围; (Ⅲ)过椭圆上异于其顶点的任一点,作圆的两条切线,切点分别为(不在坐标轴上),若直线在轴、轴上的截距分别为、,证明:为定值.
设函数,的定义域均为,且是奇函数,是偶函数,,其中e为自然对数的底数. (Ⅰ)求,的解析式,并证明:当时,,; (Ⅱ)设,,证明:当时,.
如图所示,矩形中,,,,且,交于点. (Ⅰ)求证:; (Ⅱ)求三棱锥的体积.
设等差数列的公差为d,前n项和为,等比数列的公比为q.已知,,,. (Ⅰ)求数列,的通项公式; (Ⅱ)当时,记,求数列的前n项和.