如图,直三棱柱 A B C - A 1 B 1 C 1 中, A C = B C , A A 1 = A B , D 为 B B 1 的中点, E 为 A B 1 上的一点, A E = 3 E B 1
(Ⅰ)证明: D E 为异面直线 A B 1 与 C D 的公垂线; (Ⅱ)设异面直线 A B 1 与 C D 的夹角为45°,求二面角 A 1 - A C 1 - B 1 的大小
(本小题满分14分)如图所示,椭圆的离心率为,且A(0,1)是椭圆C的顶点。(1)求椭圆C的方程;(2)过点A作斜率为1的直线,在直线上求一点M,使得以椭圆C的焦点为焦点,且过点M的双曲线E的实轴最长,并求此双曲线E的方程。
已知是的导函数,,且函数的图象过点(0,-2)。(1)求函数的表达式;(2)设,若在定义域内恒成立,求实数的取值范围。
(本小题满分14分)已知四棱锥P—ABCD的三视图如右图所示,其中正(主)视图与侧(左)视为直角三角形,俯视图为正方形。 (1)求四棱锥P—ABCD的体积; (2)若E是侧棱上的动点。问:不论点E在PA的任何位置上,是否都有?请证明你的结论?(3)求二面角D—PA—B的余弦值。
(本小题满分12分)第16届亚运会将于2010年11月12日至27日在中国广州进行,为了搞好接待工作,组委会招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余不喜爱。(1)根据以上数据完成以下2×2列联表:
(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关?(3)从女志原者中抽取2人参加接待工作,若其中喜爱运动的人数为,求的分布列和均值。参考公式:,其中参考数据:
(本小题满分12分)已知函数的最大值为2。 (1)求的值及的最小正周期;(2)求在区间上的单调递增区间。