设 C 1 , C 2 ..., C n ,...是坐标平面上的一列圆,它们的圆心都在 x 轴的正半轴上,且都与直线 y = 3 3 x 相切,对每一个正整数 n ,圆 C n 都与圆 C n + 1 相互外切,以 r n 表示 C n 的半径,已知 r n 为递增数列.
(Ⅰ)证明: r n 为等比数列; (Ⅱ)设 r 1 =1,求数列 n r n 的前 n 项和.
已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且 (Ⅰ)求证:不论λ为何值,总有平面BEF⊥平面ABC; (Ⅱ)当λ为何值时,平面BEF⊥平面ACD?
如图,在四棱锥中,底面,,,是的中点. (Ⅰ)求和平面所成的角的大小; (Ⅱ)证明平面; (Ⅲ)求二面角的正弦值
如图,在四棱锥中,底面是正方形,侧棱⊥底面,,是的中点,作交于点. (Ⅰ)证明平面; (Ⅱ)证明平面.
如图所示,正方形和矩形所在平面相互垂直,是的中点. (I)求证:; (Ⅱ)若直线与平面成45o角, 求异面直线与所成角的余弦值.
(本小题满分16分,每小题8分) 解下列不等式: (1) ; (2) log73x < log7(x2-4).