设 C 1 , C 2 ..., C n ,...是坐标平面上的一列圆,它们的圆心都在 x 轴的正半轴上,且都与直线 y = 3 3 x 相切,对每一个正整数 n ,圆 C n 都与圆 C n + 1 相互外切,以 r n 表示 C n 的半径,已知 r n 为递增数列.
(Ⅰ)证明: r n 为等比数列; (Ⅱ)设 r 1 =1,求数列 n r n 的前 n 项和.
已知,,记函数. (1)求函数的最大以及取最大值时的取值集合; (2)设的角所对的边分别为,若,,求面积的最大值.
(本小题满分15分) 在数列中,,为的前项和,且 (1)比较与大小; (2)令,数列的前项和为,求证:.
(本小题满分15分) 已知是椭圆的左、右顶点,,过椭圆的右焦点的直线交椭圆于点,交直线于点,且直线的斜率成等差数列,和是椭圆上的两动点,和的横坐标之和为2,(不垂直轴)的中垂线交轴与于点. (1)求椭圆的方程; (2)求的面积的最大值
(本小题满分15分) 已知二次函数满足条件: ①当时,,且; ②当时,; ③在R上的最小值为0 (1)求的解析式; (2)求最大的m(m>1),使得存在,只要,就有.
(本小题满分15分) 如图(1)所示,直角梯形中,,,,.过作于,是线段上的一个动点.将沿向上折起,使平面平面.连结,,(如图(2)). (Ⅰ)取线段的中点,问:是否存在点,使得平面?若存在,求出的长;不存在,说明理由; (Ⅱ)当时,求平面和平面所成的锐二面角的余弦值.