如图,棱柱 A B C - A 1 B 1 C 1 的侧面 B C C 1 B 1 是菱形, B 1 C ⊥ A 1 B . (Ⅰ)证明:平面 A 1 B 1 C ⊥ 平面 A 1 B C 1 ; (Ⅱ)设 D 是 A 1 C 1 上的点,且 A B 1 / / 平面 B 1 C D ,求 A 1 D · D C 1
(本小题满分12分)已知抛物线,过点的直线交抛物线于A,B两点,坐标原点为O,. (1)求抛物线的方程; (2)当以AB为直径的圆与y轴相切时,求直线的方程.
为了调查某校学生体质健康达标情况,现采用随机抽样的方法从该校抽取了m名学生进行体育测试. 根据体育测试得到了这m名学生各项平均成绩(满分100分),按照以下区间分为七组:,,并得到频率分布直方图(如图),已知测试平均成绩在区间有20人. (1)求m的值及中位数n; (2)若该校学生测试平均成绩小于n,则学校应适当增加体育活动时间,根据以上抽样调查数据,该校是否需要增加体育活动时间?
(本小题满分12分)如图,四棱锥的底面ABCD是平行四边形,底面ABCD,,. (1)求证:; (2)点E是棱PC的中点,求点B到平面EAD的距离.
(本小题满分12分)在中,角A,B,C所对的边分别为a,b,c,且. (1)求b; (2)若的面积为,求c.
(本小题满分10分)选修4-5:不等式选讲 设函数的最小值为a. (1)求a; (2)已知两个正数m,n满足,求的最小值.