设椭圆 C 1 : x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) ,抛物线 C 2 : x 2 + b y = b 2 .
(1) 若 C 2 经过 C 1 的两个焦点,求 C 1 的离心率; (2) 设 A ( 0 , b ) , Q ( 3 3 , 5 4 b ) ,又 M , N 为 C 1 与 C 2 不在 y 轴上的两个交点,若 △ A M N 的垂心为 B ( 0 , 3 4 b ) ,且 △ Q M N 的重心在 C 2 上,求椭圆 C 1 和抛物线 C 2 的方程.
(1)已知f()=lgx,求f(x);(2)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);(3)已知f(x)满足2f(x)+f()=3x,求f(x).
某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x<1),则出厂价相应提高的比例为0.75x, 同时预计年销售量增加的比例为0.6x.已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y与投入成本增加的比例x的关系式;(2)为使本年度利润比上年有所增加,问投入成本增加的比例x应在什么范围内?
给出下列两个条件:(1)f(+1)=x+2;(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式.
1. (北京市西城外语学校·2010届高三测试)设函数f(x)的定义域为R,当x<0时f(x)>1,且对任意的实数x,y∈R,有(Ⅰ)求f(0),判断并证明函数f(x)的单调性;(Ⅱ)数列满足,且,数列满足①求数列通项公式。②求数列的前n项和Tn的最小值及相应的n的值.
(北京市西城外语学校·2010届高三测试)已知等差数列{an}中,a2=6,a5=15.若bn=a2n ,求数列{bn}的前5项和。