为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如下:
(Ⅰ)估计该地区老年人中,需要志愿提供帮助的老年人的比例; (Ⅱ)能否有99℅的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (Ⅲ)根据(Ⅱ)的结论,能否提出更好的调查办法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由。 附:
(本小题满分12分) (Ⅰ)小问7分,(Ⅱ)小问5分.)已知O为坐标原点,向量=(sinα,1),=(cosα,0),=(-sinα,2),点P是直线AB上的一点,且点B分有向线段的比为1.(1)记函数f(α)=·,α∈,讨论函数f(α)的单调性,并求其值域;(2)若O、P、C三点共线,求|+|的值.
(本小题满分12分),(Ⅰ)小问5分,(Ⅱ)小问7分)设的内角A、B、C的对边长分别为a、b、c,且3+3-3=4bc .(Ⅰ) 求sinA的值;(Ⅱ)求的值.
(本小题满分12分), (Ⅰ)小问5分,(Ⅱ)小问7分.)已知函数(其中常数a,b∈R),是奇函数.(Ⅰ)求的表达式;(Ⅱ)讨论的单调性,并求在区间上的最大值和最小值.
在中,已知内角A、B、C所对的边分别为a、b、c,向量, ,且(I)求锐角B的大小; (II)如果,求的面积的最大值。
(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分. )已知是首项为19,公差为-2的等差数列,为的前项和.(Ⅰ)求通项及;(Ⅱ)设是首项为1,公比为3的等比数列,求数列的通项公式及其前项和.