如图,在长方体 A B C D - A 1 B 1 C 1 D 1 中, E , F 分别是棱 B C , C C 1 上的点, C F = A B = 2 C E , A B : A D : A A 1 = 1 : 2 : 4 .
(1)求异面直线 E F 与 A 1 D 所成角的余弦值; (2)证明 A F ⊥ 平面 A 1 E D ;
(3)求二面角 A 1 - E D - F 的正弦值.
在等差数列中,,问为何值时取得最大值,并求最大值
求下列函数的定义域
已知函数f(x)=和图象过坐标原点O,且在点(-1,f(-1))处的切线的斜率是-5。(1)求实数b,c的值;(2)求函数f(x)在区间[-1,1]上的最小值;(3)若函数y=f(x)图象上存在两点P,Q,使得对任意给定的正实数a都满足△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上,求点P的横坐标的取值范围。
已知A1,A2,B是椭圆=1(a>b>0)的顶点(如图),直线l与椭圆交于异于顶点的P,Q两点,且l∥A2B,若椭圆的离心率是,且|A2B|=。(1)求此椭圆的方程;(2)设直线A1P和直线BQ的倾斜角分别为α,β,试判断α+β是否为定值?若是,求出此定值;若不是,说明理由。
已知数列{}为等差数列,公差d≠0,同{}中的部分项组成的数列为等比数列,其中。(1)求数列{}的通项公式;(2)记