如图,在长方体 A B C D - A 1 B 1 C 1 D 1 中, E , F 分别是棱 B C , C C 1 上的点, C F = A B = 2 C E , A B : A D : A A 1 = 1 : 2 : 4 .
(1)求异面直线 E F 与 A 1 D 所成角的余弦值; (2)证明 A F ⊥ 平面 A 1 E D ;
(3)求二面角 A 1 - E D - F 的正弦值.
已知命题:方程有两个不等的负实根;命题:方程无实根, 若“或”为真,而“且”为假,求实数的取值范围.
已知抛物线的顶点在原点,对称轴是轴,抛物线上的点到焦点的距离等于5,求抛物线的方程和的值.
F1,F2为双曲线的焦点,过作垂直于轴的直线交双曲线与点P且∠P F1F2=300,求双曲线的渐近线方程。
椭圆短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆长轴端点的最短距离为,求此椭圆的标准方程。
(1)若的展开式中,的系数是的系数的倍,求; (2)已知的展开式中, 的系数是的系数与的系数的等差中项,求; (3)已知的展开式中,二项式系数最大的项的值等于,求。