如图,已知四棱锥 P - A B C D 的底面为等腰梯形, A B / / C D , A C ⊥ B D ,垂足为 H , P H 是四棱锥的高, E 为 A D 中点. (1)证明: P E ⊥ B C ;
(2)若 ∠ A P B = ∠ A D B = 60 ° ,求直线 P A 与平面 P E H 所成角的正弦值.
已知函数。(Ⅰ)求的单调区间;(Ⅱ)若,证明当时,函数的图象恒在函数图象的上方.
如图,已知四棱锥。(1)若底面为菱形,,, 求证:;(2) 若底面为平行四边形,为的中点, 在上取点,过和点的平面与平面的交线为,求证:。
某幼儿园在“六·一儿童节”开展了一次亲子活动,此次活动由宝宝和父母之一(后面以家长代称)共同完成,幼儿园提供了两种游戏方案:方案一 宝宝和家长同时各抛掷一枚质地均匀的正方体骰子(六个面的点数分别是1,2,3,4,5,6),宝宝所得点数记为,家长所得点数记为;方案二 宝宝和家长同时按下自己手中一个计算器的按钮(此计算器只能产生区间[1,6]的随机实数),宝宝的计算器产生的随机实数记为,家长的计算器产生的随机实数记为.(Ⅰ) 在方案一中,若,则奖励宝宝一朵小红花,求抛掷一次后宝宝得到一朵小红花的概率;(Ⅱ)在方案二中,若,则奖励宝宝一本兴趣读物,求按下一次按钮后宝宝得到一本兴趣读物的概率.
设数列的前项和为,且,.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.
已知函数.(1)求函数的最小正周期;(2)求函数在区间上的函数值的取值范围.