在 ∆ A B C 中,角 A , B , C 所对的边分别为 a , b , c ,设 S 为 ∆ A B C 的面积,满足 S = 3 4 a 2 + b 2 - c 2 . (Ⅰ)求角 C 的大小; (Ⅱ)求 sin A + sin B 的最大值.
已知一个圆C和轴相切,圆心在直线上,且在直线上截得的弦长为,求圆C的方程.
画出计算的程序框图,并写出相应的程序.
已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3),M是BC边上的中点.(1)求AB边所在的直线方程;(2)求中线AM的长(3)求AB边的高所在直线方程.
已知动点M到点A(2,0)的距离是它到点B(8,0)的距离的一半, 求:(1)动点M的轨迹方程;(2)若N为线段AM的中点,试求点N的轨迹.
(本小题满分14分)已知函数的单调递增区间为,(Ⅰ)求证:;(Ⅱ)当取最小值时,点是函数图象上的两点,若存在使得,求证: