在 ∆ A B C 中,角 A , B , C 所对的边分别为 a , b , c ,设 S 为 ∆ A B C 的面积,满足 S = 3 4 a 2 + b 2 - c 2 . (Ⅰ)求角 C 的大小; (Ⅱ)求 sin A + sin B 的最大值.
已知数列满足 (Ⅰ)求数列的通项公式; (Ⅱ)若数列满足,证明:是等差数列; (Ⅲ)证明:
设G为的重心,过G的直线分别交AB,AC于,已知:,和的面积分别为, (Ⅰ)求的值; (Ⅱ) 求的取值范围.
设函数f(x)=cos(2x+)+sinx.(Ⅰ)求函数f(x)的最大值和最小正周期.(2)设A,B,C为ABC的三个内角,若cosB=,,且C为锐角,求sinA.
设是等差数列,是各项都为正数的等比数列,且,,.(Ⅰ)求、的通项公式;(Ⅱ)求数列的前n项和。
在中,为锐角,角所对的边分别为,且;(I)求的值;(II)若,求的值。