在 ∆ A B C 中,角 A , B , C 所对的边分别为 a , b , c ,设 S 为 ∆ A B C 的面积,满足 S = 3 4 a 2 + b 2 - c 2 . (Ⅰ)求角 C 的大小; (Ⅱ)求 sin A + sin B 的最大值.
如图,为一个等腰三角形形状的空地,腰的长为(百米),底的长为(百米).现决定在空地内筑一条笔直的小路(宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等、面积分别为和. ⑴若小路一端为的中点,求此时小路的长度; ⑵求的最小值.
在菱形中,,线段的中点是,现将沿折起到的位置,使平面和平面垂直,线段的中点是. ⑴证明:直线∥平面; ⑵判断平面和平面是否垂直,并证明你的结论.
(本小题满分14分) 已知函数的定义域为R, 且对于任意R,存在正实数,使得都成立. 若,求的取值范围; 当时,数列满足,. 证明:; 令,证明:.
(本小题满分14分) 已知函数满足,对于任意R都有,且,令. (1)求函数的表达式; (2)求函数的单调区间; 研究函数在区间上的零点个数.
(本小题满分14分) 已知直线上有一个动点,过点作直线垂直于轴,动点在上,且满足(为坐标原点),记点的轨迹为. (1)求曲线的方程; (2)若直线是曲线的一条切线, 当点到直线的距离最短时,求直线的方程.