已知集合 S n = { X | X = ( x 1 , x 2 , … , x n ) , x i ∈ { 0 , 1 } , i = 1 , 2 , … , n } ( n ≥ 2 ) ,对于 A = ( a 1 , a 2 , … , a n ) , B = ( b 1 , b 2 , … , b n ) ∈ S n ,定义 A 与 B 的差为 A - B = ( | a 1 - b 1 | , | a 2 - b 2 | , … , | a n - b n | ) ; A 与 B 之间的距离为 d ( A , B ) = ∑ i - 1 a 1 - b 1 ,
(Ⅰ)当 n = 5 时,设 A = ( 0 , 1 , 0 , 0 , 1 ) , B = ( 1 , 1 , 1 , 0 , 0 ) ,求 A - B , d ( A , B ) ;
(Ⅱ)证明: A , B , C ∈ S n ,有 A - B ∈ S n ,且 d ( A - C , B - C ) = d ( A , B ) ;
(Ⅲ)证明: A , B , C ∈ S n , d ( A , B ) , d ( A , C ) , d ( B , C ) 三个数中至少有一个是偶数.
在中,角的对边分别为,。(Ⅰ)求的值;(Ⅱ)求的面积.
已知函数。(1)当时,求函数的单调区间;(2)求证:当时,对所有的都有成立.
已知函数,且当时,的最小值为2.(1)求的值,并求的单调增区间;(2)将函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的,再把所得图象向右平移个单位,得到函数,求方程在区间上的所有根之和.
已知函数()(1)若曲线在点处的切线平行于轴,求的值;(2)当时,若直线与曲线在上有公共点,求的取值范围.
已知函数(1)求的最小正周期和最大值;(2)用五点作图法在给出的坐标系中画出在上的图像.