已知集合 S n = { X | X = ( x 1 , x 2 , … , x n ) , x i ∈ { 0 , 1 } , i = 1 , 2 , … , n } ( n ≥ 2 ) ,对于 A = ( a 1 , a 2 , … , a n ) , B = ( b 1 , b 2 , … , b n ) ∈ S n ,定义 A 与 B 的差为 A - B = ( | a 1 - b 1 | , | a 2 - b 2 | , … , | a n - b n | ) ; A 与 B 之间的距离为 d ( A , B ) = ∑ i - 1 a 1 - b 1 ,
(Ⅰ)当 n = 5 时,设 A = ( 0 , 1 , 0 , 0 , 1 ) , B = ( 1 , 1 , 1 , 0 , 0 ) ,求 A - B , d ( A , B ) ;
(Ⅱ)证明: A , B , C ∈ S n ,有 A - B ∈ S n ,且 d ( A - C , B - C ) = d ( A , B ) ;
(Ⅲ)证明: A , B , C ∈ S n , d ( A , B ) , d ( A , C ) , d ( B , C ) 三个数中至少有一个是偶数.
(本小题14分)如图,四棱锥中,底面ABCD为平行四边形,,,底面ABCD. (1)求|DB|的长 (2)证明:; (3)若PD=AD,求二面角D-PA-B的余弦值.
(本小题12分)已知函数. (1)求函数的最小正周期及单调增区间; (2)求函数在上的最大值和最小值,并求函数取得最大值和最小值时的自变量的值.
已知函数在处取得极值. (1)讨论和是函数的极大值还是极小值; (2)过点作曲线的切线,求此切线方程.
已知函数,曲线在点处的切线为,若时,有极值. (1)求的值; (2)求在上的最大值和最小值.
已知数列。 (1)求的值; (2)猜想的表达式并用数学归纳法证明。