已知椭圆 C 的左、右焦点坐标分别是 ( - 2 , 0 ) , ( 2 , 0 ) ,离心率是 6 3 ,直线 y = t 与椭圆 C 交与不同的两点 M , N ,以线段为直径作圆 P ,圆心为 P .
(Ⅰ)求椭圆 C 的方程; (Ⅱ)若圆 P 与 x 轴相切,求圆心 P 的坐标; (Ⅲ)设 Q ( x , y ) 是圆 P 上的动点,当 t 变化时,求 y 的最大值.
已知平行四边形ABCD,从平面ABCD外一点引向量, (1)求证:四点共面; (2)平面ABCD平面EFGH.
已知椭圆的两个焦点分别为离心率e=(1)求椭圆的方程。(2)若CD为过左焦点的弦,求的周长
求双曲线的实半轴长,虚半轴长,焦点坐标,离心率,渐近线方程。
已知函数 (1)求函数的极值点; (2)若直线过点(0,—1),并且与曲线相切,求直线的方程; (3)设函数,其中,求函数在上的最小值. (其中e为自然对数的底数)
已知椭圆>b>的离心率为且椭圆的一个焦点与抛物线的焦点重合,斜率为的直线过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m). (1)求椭圆的标准方程; (2)求m的取值范围; (3)试用m表示△MPQ的面积S,并求面积S的最大值.