已知椭圆 C 的左、右焦点坐标分别是 ( - 2 , 0 ) , ( 2 , 0 ) ,离心率是 6 3 ,直线 y = t 与椭圆 C 交与不同的两点 M , N ,以线段为直径作圆 P ,圆心为 P .
(Ⅰ)求椭圆 C 的方程; (Ⅱ)若圆 P 与 x 轴相切,求圆心 P 的坐标; (Ⅲ)设 Q ( x , y ) 是圆 P 上的动点,当 t 变化时,求 y 的最大值.
.已知中心在原点,焦点在轴上,离心率为的椭圆过点(,) (1) 求椭圆方程; (2) 设不过原点O的直线,与该椭圆交于P、Q两点,直线OP、PQ、OQ的斜率依次为、、,满足、、依次成等差数列,求△OPQ面积的取值范围.
.如图,四棱锥P-ABCD中,PA⊥底面ABCD,∥,AD=CD=1,∠=120°,=,∠=90°,M是线段PD上的一点(不包括端点). (1)求证:BC⊥平面PAC; (2)求异面直线AC与PD所成的角的余弦值 (3)试确定点M的位置,使直线MA与平面PCD所成角的正弦值为.
已知等比数列的公比大于1,是数列的前n项和,,且,,依次成等差数列,数列满足:,) (1) 求数列、的通项公式; (2)求数列的前n项和为
已知函数的最小正周期为 (1) 若,求函数的最小值; (2) 在△ABC中,若,且,求的值
已知函数,其中为常数,为自然对数的底数. (Ⅰ)当时,求的单调区间; (Ⅱ)若在区间上的最大值为2,求的值.