已知椭圆 C 的左、右焦点坐标分别是 ( - 2 , 0 ) , ( 2 , 0 ) ,离心率是 6 3 ,直线 y = t 与椭圆 C 交与不同的两点 M , N ,以线段为直径作圆 P ,圆心为 P .
(Ⅰ)求椭圆 C 的方程; (Ⅱ)若圆 P 与 x 轴相切,求圆心 P 的坐标; (Ⅲ)设 Q ( x , y ) 是圆 P 上的动点,当 t 变化时,求 y 的最大值.
在中,分别为内角对边,且. (Ⅰ)求; (Ⅱ)若,,求的值.
已知数列{an}的前n项和为Sn,且Sn=,n∈N﹡,数列{bn}满足an=4log2bn+3,n∈N﹡。 (1)求an,bn; (2)求数列{an·bn}的前n项和Tn。
若不等式kx2-2x+6k<0(k≠0)。 (1)若不等式解集是{x|x<-3或x>-2},求k的值; (2)若不等式解集是R,求k的取值。
数列满足。 (Ⅰ)若是等差数列,求其通项公式; (Ⅱ)若满足, 为的前项和,求。
已知△的内角所对的边分别为且。 (1)若,求的值; (2)若△的面积,求的值。