如图,AB是圆O的直径,C是半径OB的中点,D是OB延长线上一点,且BD=OB,直线MD与圆O相交于点M、T(不与A、B重合),DN与圆O相切于点N,连结MC,MB,OT.(1) 求证:;(2) 若,试求的大小.
已知四棱锥的底面是菱形.,为的中点. (1)求证:∥平面; (2)求证:平面平面.
已知等差数列满足. (Ⅰ)求; (Ⅱ)数列满足, 为数列的前项和,求.
各项均为正数的等差数列首项为1,且成等比数列, (1)求、通项公式; (2)求数列前n项和; (3)若对任意正整数n都有成立,求范围.
已知椭圆E:()离心率为,上顶点M,右顶点N,直线MN与圆相切,斜率为k的直线l经过椭圆E在正半轴的焦点F,且交E于A、B不同两点. (1)求E的方程; (2)若点G(m,0)且| GA|=| GB|,,求m的取值范围.
如图,在直三棱柱(侧棱垂直底面)中,M、N分别是BC、AC1中点,AA1=2,AB=,AC=AM=1. (1)证明:MN∥平面A1ABB1; (2)求几何体C—MNA的体积.