已知ABCD是矩形,AD=4,AB=2,E、F分别是线段AB、BC的中点,PA⊥面ABCD。(1)证明:PF⊥FD;(2)在PA上是否存在点G,使得EG//平面PFD。
已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.
在直角坐标系xOy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.(Ⅰ)求圆C的圆心到直线l的距离;(Ⅱ)设圆C与直线l交于点A、B.若点P的坐标为(3,),求|PA|+|PB|.
如图,已知AB圆O的直径,C、D是圆O上的两个点,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.(Ⅰ)求证:C是劣弧BD的中点;(Ⅱ)求证:BF=FG.
已知函数f(x)=x2﹣alnx,a∈R.(Ⅰ)当a=4时,求函数f(x)在[1,e]上的最小值及相应的x的值;(Ⅱ)若存在x∈[2,e],使得f(x)≥(a﹣2)x成立,求实数a的取值范围.
如图,椭圆C:+=1(a>b>0)的长轴长为4,不过原点O的斜率为﹣的直线l与椭圆C相交于A、B两点,已知点P(2,1)且直线OP平分线段AB.(Ⅰ)求椭圆C的方程;(Ⅱ)求△OAB面积取最大值时直线l的方程.