(本小题满分13分)甲、乙两人各射击一次,击中目标的概率分别是和,假设两个射击是否击中目标,相互之间没有影响;每人各次射击是否中目标相互之间也没有影响。(1)求甲射击4次,至少有1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(3)假设某人连续2次未击中目标,则中止其射击。则乙恰好射击5次后被中止射击的概率是多少?
已知a,b,c分别为△ABC三个内角A,B,C的对边,为,的等差中项. (1)求A; (2)若a=2,△ABC的面积为,求b,c的值.
设一个焦点为,且离心率的椭圆上下两顶点分别为,直线交椭圆于两点,直线与直线交于点. (1)求椭圆的方程; (2)求证:三点共线.
如图,在正三棱柱ABC—A1B1C1中,. (1)求直线与平面所成角的正弦值; (2)在线段上是否存在点?使得二面角的大小为60°,若存在,求出的长;若不存在,请说明理由.
已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为2,且. (1)求抛物线的方程; (2)过点作直线交抛物线于,两点,求证:.
已知为直角梯形,,平面, (1)求证:平面; (2)求平面与平面所成锐二面角的余弦值.