(本小题满分14分)已知函数,(1)若函数在上是减函数,求实数的取值范围;(2)令,是否存在实数,当(是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由。K
(本小题满分10分) 如图,在直三棱柱中,,.棱上有两个动点E,F,且EF =" a" (a为常数). (Ⅰ)在平面ABC内确定一条直线,使该直线与直线CE垂直; (Ⅱ)判断三棱锥B—CEF的体积是否为定值.若是定值,求出这个三棱锥的体积;若不是定值,说明理由.
(本小题满分10分) 记等差数列{}的前n项和为,已知,. (Ⅰ)求数列{}的通项公式; (Ⅱ)令,求数列{}的前项和.
(本小题满分10分) 一种放射性元素,最初的质量为500g,按每年10﹪衰减. (Ⅰ)求t年后,这种放射性元素质量ω的表达式; (Ⅱ)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需要的时间).(精确到0.1;参考数据:)
(本小题满分10分) 已知一条曲线上的点到定点的距离是到定点距离的二倍,求这条曲线的方程.
一袋中装有分别标记着1、2、3、4 数字的4个球, 从这只袋中每次取出1个球, 取出后放回, 连续取三次, 设三次取出的球中数字最大的数为ξ.(1) 求ξ=3时的概率; (2) 求ξ的概率分布列及数学期望.