已知椭圆方程为,它的一个顶点为,离心率.(1)求椭圆的方程;(2)设直线与椭圆交于A,B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.
在△ABC中,角、、的对边分别为、、,满足 .(Ⅰ)求角C的大小;(Ⅱ)若,且,求△ABC的面积.
设等差数列的前n项和为,且,.设数列前n项和为,且,求数列、的通项公式.
在一次数学统考后,某班随机抽取10名同学的成绩进行样本分析,获得成绩数据的茎叶图如下.(Ⅰ)计算样本的平均成绩及方差;(Ⅱ)现从80分以上的样本中随机抽出2名学生,求抽出的2名学生的成绩分别在、上的概率.
已知函数,,其中且. (Ⅰ)当,求函数的单调递增区间;(Ⅱ)若时,函数有极值,求函数图象的对称中心坐标;(Ⅲ)设函数 (是自然对数的底数),是否存在a使在上为减函数,若存在,求实数a的范围;若不存在,请说明理由.
设平面向量,,已知函数在上的最大值为6.(Ⅰ)求实数的值;(Ⅱ)若,.求的值.