如图,DC⊥平面ABC,EB//DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE、AB的中点。 (I)证明:PQ//平面ACD; (II)求异面直线AE与BC所成角的余弦值; (III)求平面ACD与平面ABE所成锐二面角的大小。
在中,角的对边分别为,若.(Ⅰ)求证:、、成等差数列;(Ⅱ)若,求的面积.
中,分别是角的对边,,,且(1)求角的大小; (2)设,且的最小正周期为,求在上的最大值和最小值,及相应的的值。
在等差数列中,为前n项和,且满足(1)求及数列的通项公式;(2)记,求数列的前n项和
如图,甲船以每小时海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲船的北偏西的方向处,此时两船相距20海里.当甲船航行20分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里?
已知函数,其中.(Ⅰ)当=1时,求在(1,)的切线方程(Ⅱ)当时,,求实数的取值范围。