(本小题满分13分)设椭圆的上顶点为,椭圆上两点在轴上的射影分别为左焦点和右焦点,直线的斜率为,过点且与垂直的直线与轴交于点,的外接圆为圆.(1)求椭圆的离心率;(2)直线与圆相交于两点,且,求椭圆方程;(3)设点在椭圆C内部,若椭圆C上的点到点N的最远距离不大于,求椭圆C的短轴长的取值范围.
(本小题满分12分)如图,在四棱锥中,平面,,四边形,且,点为中点.求证:平面平面;求点到平面的距离.
(本小题满分12分)根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如下图显示.已知、、三个年龄段的上网购物者人数成等差数列,求,的值;该电子商务平台将年龄在之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1000位上网购物者中抽取5人,并在这5人中随机抽取3人进行回访,求此三人获得代金券总和为200元的概率.
(本小题满分12分)在中,,.求角的值;设,求.
(本小题满分10分)选修4-5:不等式选讲 设函数,.当时,求不等式的解集;对任意恒有,求实数的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.求曲线的普通方程与曲线的直角坐标方程;试判断曲线与是否存在两个交点,若存在,求出两交点间的距离;若不存在,说明理由.