(本小题满分12分)如图,为圆的直径,点、在圆上,,矩形所在的平面和圆所在的平面互相垂直,且,.(1)求证:平面;(2)设的中点为,求证:平面;(3)设平面将几何体分成的两个锥体的体积分别为,,求.
设等差数列{an}的前n项和为Sn,且S4=-62,S6=-75,求:(1){an}的通项公式an及其前n项和Sn; (2)|a1|+|a2|+|a3|+…+|a14|.
设等差数列{an}的前n项和为Sn,已知a3=5,S3=9.(1)求首项a1和公差d的值;(2)若Sn=100,求n的值.
已知数列的前n项和为Sn,并且满足a1=2,nan+1=Sn+n(n+1).(1)求{an}的通项公式;(2)令Tn= Sn,是否存在正整数m,对一切正整数n,总有Tn≤Tm?若存在,求m的值;若不存在,说明理由.
若数列{an}满足an+1=an+an+2(n∈N*),则称数列{an}为“凸数列”.(1)设数列{an}为“凸数列”,若a1=1,a2=-2,试写出该数列的前6项,并求出前6项之和;(2)在“凸数列”{an}中,求证:an+3=-an,n∈N*;(3)设a1=a,a2=b,若数列{an}为“凸数列”,求数列前2011项和S2011.
已知an=n×0.8n(n∈N*).(1)判断数列{an}的单调性;(2)是否存在最小正整数k,使得数列{an}中的任意一项均小于k?请说明理由.