一个盒子中装有5张卡片,每张卡片上写有一个数字,数字分别是1、2、3、4、5,现从盒子中随机抽取卡片。(I)若从盒子中有放回地抽取3次卡片,每次抽取一张,求恰有两次取到的卡片上数字为偶数的概率;(II)若从盒子中依次抽取卡片,每次抽取一张,取出的卡片不放回,当取到一张记有偶数的卡片即停止抽取,否则继续抽取卡片,求抽取次数X的分布列和期望.
如图,在四棱锥中,是正方形,平面,,分别是的中点.(1)在线段上确定一点,使平面,并给出证明;(2)证明平面平面,并求出到平面的距离.
求半径为,圆心在直线:上,且被直线:所截弦的长为的圆的方程.
如图,在四棱锥中,平面,底面为直角梯形,∥,,,(1)求证:⊥平面;(2)求异面直线与所成角的大小。
如图,在三棱锥中,分别为的中点. (1)求证:EF∥平面; (2)若平面平面,且,º,求证:平面平面
已知直线的方程为,求满足下列条件的直线的方程:(1)与平行且过点;(2)与垂直且过点;