(本小题满分12分)已知抛物线的准线方程,与直线在第一象限相交于点,过作的切线,过作的垂线交x轴正半轴于点,过作的平行线交抛物线于第一象限内的点,过作抛物线的切线,过作的垂线交x轴正半轴于点,…,依此类推,在x轴上形成一点列,,,…,,设点的坐标为(Ⅰ)试探求关于的递推关系式;(Ⅱ)求证:;(Ⅲ)求证:.
如图,已知抛物线,点是x轴上的一点,经过点且斜率为1的直线与抛物线相交于两点. (1)求证线段的中点在一条定直线上,并求出该直线方程; (2)若(O为坐标原点),求的值.
如图,在四棱锥中,底面是菱形,,⊥平面,,点分别为和中点. (1)求证:直线平面; (2)求与平面所成角的正弦值.
已知公差不为0的等差数列的前项和为,且成等比数列。 (1)求数列的通项公式; (2)设,数列的最小项是第几项,并求出该项的值.
△中,角的对边分别为,且. (1)求角的大小; (2)若,求△的面积.
(本小题满分9分)设,, (Ⅰ)若在上有两个不等实根,求的取值范围. (Ⅱ)若对任意的,存在,都有成立,求实数的取值范围.