(22、23、24三题中任选一题作答,如果多做,则按所做的的第一题记分)(本小题满分10分)选修4—1:几何证明选讲如图,是⊙的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1); (2).
如图,在四棱锥P-ABCD中,底面ABCD是矩形,侧面PAD是正三角形且与底面ABCD垂直,E是AB的中点,PC与平面ABCD所成角为.(1)求二面角P-CE-D的大小;(2)当AD为多长时,点D到平面PCE 的距离为2.
某校欲从两个素质拓展小组中选拔4个同学参加市教育局组织的2010年夏令营活动,已知甲组内有实力相当的1个女生和3个男生,乙组内有实力相当的2个女生和4个男生,现从甲、乙两个小组内各任选2个同学.(1)求选出的4个同学中恰有1个女生的概率;(2)设X为选出的4个同学中女生的个数,求X的分布列和数学期望.
如图,为了计算某湖岸边两景点B与C的距离,由于地形的限制,需要在岸上A和D两个测量点,现测得,AD="10km,AB=14km," , ,求两景点B与C之间的距离(假设A、B、C、D在同一平面内,测量结果精确到0.1km,参考数据: )
已知二次函数和“伪二次函数” (), (1)证明:只要,无论取何值,函数在定义域内不可能总为增函数; (2)在同一函数图像上任意取不同两点,线段中点为,记直线的斜率为, 1对于二次函数,求证:; 2对于“伪二次函数”,是否有1同样的性质?证明你的结论.
已知函数的图像经过点.(1)求该函数的解析式;(2)数列中,若,为数列的前项和,且满足,证明数列成等差数列,并求数列的通项公式;(3)另有一新数列,若将数列中的所有项按每一行比上一行多一项的规则排成如下数表:
…………记表中的第一列数构成的数列即为数列,上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当时,求上表中第行所有项的和.