已知函数在上为增函数,且,(1)求的值;(2)若在上为单调函数,求的取值范围;(3)设,若在上至少存在一个,使得成立,求的取值范围。
已知函数. (Ⅰ)求的值; (Ⅱ)用函数单调性的定义证明函数在上是减函数.
已知函数. (Ⅰ)求函数的最小正周期; (Ⅱ) 求函数的单调递增区间.
已知:函数的定义域为,集合. (Ⅰ)求集合; (Ⅱ)求.
已知函数,其中 (Ⅰ)若是函数的极值点,求实数的值; (Ⅱ)若对任意的(为自然对数的底数)都有成立,求实数的取值范围
在平面直角坐标系中,已知圆心在轴上,半径为的圆位于轴的右侧,且与轴相切, (Ⅰ)求圆的方程; (Ⅱ)若椭圆的离心率为,且左右焦点为,试探究在圆上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标)