(本小题满分12分) 如图,在四棱锥P—ABCD中,底面ABCD是矩形,已知AB = 3,AD = 2,PA = 2,,. (1) 证明:AD⊥平面PAB; (2) 求异面直线PC与AD所成的角的大小; (3) 求二面角P—BD—A的大小.
(本题10分) 已知等差数列满足,为的前项和. (1)求通项及当为何值时,有最大值,并求其最大值。 (2)设是首项为1,公比为3的等比数列,求数列的通项公式及其前项和.
(本题10分) (1) 若集合,求; (2) 若集合,正数满足,的所有可能取值组成的集合为,求。
已知函数 (1)判断的奇偶性并证明; (2)若的定义域为[](),判断在定义域上的增减性,并加以证明; (3)若,使的值域为[]的定义域区间[]()是否存在?若存在,求出[],若不存在,请说明理由.
(本小题14分)根据市场调查,某商品在最近的20天内的价格与时间满足关系 {,销售量与时间满足关系,,设商品的日销售额为(销售量与价格之积). (1)求商品的日销售额的解析式; (2)求商品的日销售额的最大值.
(本题满分14分,每小题各7分)计算下列各式 (Ⅰ) (Ⅱ)