(本小题满分14分)(理)已知数列{a中,a=5且a=3a(n≥2)(1)求a的值.(2)设b=,是否存在实数λ,使数列{b为等差数列,若存在请求其通项b,若不存在请说明理由.
已知数列满足 (1)分别求的值。 (2)猜想的通项公式,并用数学归纳法证明。
已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点,为坐标原点,过点作的平行线交曲线于两个不同的点. (1)求曲线的方程; (2)试探究和的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由; (3)记的面积为,求的最大值.
已知函数,,其中,为自然对数的底数. (1)若在处的切线与直线垂直,求的值; (2)求在上的最小值; (3)试探究能否存在区间,使得和在区间上具有相同的单调性?若能存在,说明区间的特点,并指出和在区间上的单调性;若不能存在,请说明理由.
已知数列满足:且. (1)令,判断是否为等差数列,并求出; (2)记的前项的和为,求.
如图,在四棱锥中,底面为正方形,平面,已知,为线段的中点. (1)求证:平面; (2)求四棱锥的体积.