(本小题满分12分)某校从参加某次“广州亚运”知识竞赛测试的学生中随机抽出名学生,将其成绩(百分制)(均为整数)分成六段,…后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)求分数在内的频率,并补全这个频率分布直方图;(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(Ⅲ)若从名学生中随机抽取人,抽到的学生成绩在记分,在记分,用表示抽取结束后的总记分,求的分布列和数学期望.
已知抛物线的顶点为坐标原点,焦点为,直线与抛物线相交于两点,且线段的中点为.(Ⅰ)求抛物线的和直线的方程;(Ⅱ)若过且互相垂直的直线分别与抛物线交于,,,,求四边形面积的最小值.
如图1,在中,,分别是上的点,且.将沿折起到的位置,使,如图2.(Ⅰ)是的中点,求与平面所成角的大小;(Ⅱ)求二面角的正切值.
已知数列满足且.(Ⅰ)求的值;(Ⅱ)是否存在一个实数,使得且为等差数列?若存在,求出的值;如不存在,请说明理由;(Ⅲ)求数列的前项和.
已知函数.(Ⅰ)求函数的最小正周期、最大值及取最大值时自变量的取值集合;(Ⅱ)在中,角,,的对边分别是,,;若,,成等比数列,且,求的值.
已知函数().(Ⅰ)若函数在定义域内单调递增,求实数的取值范围;(Ⅱ)若,且关于的方程在上恰有两个不等的实根,求实数的取值范围;(Ⅲ)设各项为正数的数列满足,(),求证:.